Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 164(7)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37224504

RESUMO

Corticosteroids act on the glucocorticoid receptor (GR; NR3C1) to resolve inflammation and are routinely prescribed to breast cancer patients undergoing chemotherapy treatment to alleviate side effects. Triple-negative breast cancers (TNBCs) account for 15% to 20% of diagnoses and lack expression of estrogen and progesterone receptors as well as amplified HER2, but they often express high GR levels. GR is a mediator of TNBC progression to advanced metastatic disease; however, the mechanisms underpinning this transition to more aggressive behavior remain elusive. We previously showed that tissue/cellular stress (hypoxia, chemotherapies) as well as factors in the tumor microenvironment (transforming growth factor ß [TGF-ß], hepatocyte growth factor [HGF]) activate p38 mitogen-activated protein kinase (MAPK), which phosphorylates GR on Ser134. In the absence of ligand, pSer134-GR further upregulates genes important for responses to cellular stress, including key components of the p38 MAPK pathway. Herein, we show that pSer134-GR is required for TNBC metastatic colonization to the lungs of female mice. To understand the mechanisms of pSer134-GR action in the presence of GR agonists, we examined glucocorticoid-driven transcriptomes in CRISPR knock-in models of TNBC cells expressing wild-type or phospho-mutant (S134A) GR. We identified dexamethasone- and pSer134-GR-dependent regulation of specific gene sets controlling TNBC migration (NEDD9, CSF1, RUNX3) and metabolic adaptation (PDK4, PGK1, PFKFB4). TNBC cells harboring S134A-GR displayed metabolic reprogramming that was phenocopied by pyruvate dehydrogenase kinase 4 (PDK4) knockdown. PDK4 knockdown or chemical inhibition also blocked cancer cell migration. Our results reveal a convergence of GR agonists (ie, host stress) with cellular stress signaling whereby pSer134-GR critically regulates TNBC metabolism, an exploitable target for the treatment of this deadly disease.


Assuntos
Receptores de Glucocorticoides , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Fosfofrutoquinase-2/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral
2.
Cancers (Basel) ; 14(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36358755

RESUMO

HER2+ breast cancer accounts for 15% of all breast cancer cases. Current frontline therapy for HER2+ metastatic breast cancer relies on targeted antibodies, trastuzumab and pertuzumab, combined with microtubule inhibitors in the taxane class (paclitaxel or docetaxel). It is well known that the clinical efficacy of taxanes is limited by the development of chemoresistance and hematological and neurotoxicities. The colchicine-binding site inhibitors (CBSIs) are a class of promising alternative agents to taxane therapy. Sabizabulin (formerly known as VERU-111) is a potent CBSI that overcomes P-gp-mediated taxane resistance, is orally bioavailable, and inhibits tumor growth and distant metastasis in triple negative breast cancer (TNBC). Herein, we demonstrate the efficacy of sabizabulin in HER2+ breast cancer. In vitro, sabizabulin inhibits the proliferation of HER2+ breast cancer cell lines with low nanomolar IC50 values, inhibits clonogenicity, and induces apoptosis in a concentration-dependent manner. In vivo, sabizabulin inhibits breast tumor growth in the BT474 (ER+/PR+/HER2+) xenograft model and a HER2+ (ER-/PR-) metastatic patient-derived xenograft (PDX) model, HCI-12. We demonstrate that sabizabulin is a promising alternative agent to target tubulin in HER2+ breast cancer with similar anti-metastatic efficacy to paclitaxel, but with the advantage of oral bioavailability and lower toxicity than taxanes.

3.
Mol Cancer Ther ; 21(7): 1103-1114, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35499388

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer. Unlike other subtypes of breast cancer, TNBC lacks hormone and growth factor receptor targets. Colchicine-binding site inhibitors (CBSI) targeting tubulin have been recognized as attractive agents for cancer therapy, but there are no CBSI drugs currently FDA approved. CH-2-77 has been reported to have potent antiproliferative activity against a panel of cancer cells in vitro and efficacious antitumor effects on melanoma xenografts, yet, its anticancer activity specifically against TNBC is unknown. Herein, we demonstrate that CH-2-77 inhibits the proliferation of both paclitaxel-sensitive and paclitaxel-resistant TNBC cells with an average IC50 of 3 nmol/L. CH-2-77 also efficiently disrupts the microtubule assembly, inhibits the migration and invasion of TNBC cells, and induces G2-M cell-cycle arrest. The increased number of apoptotic cells and the pattern of expression of apoptosis-related proteins in treated MDA-MB-231 cells suggest that CH-2-77 induces cell apoptosis through the intrinsic apoptotic pathway. In vivo, CH-2-77 shows acceptable overall pharmacokinetics and strongly suppresses the growth of orthotopic MDA-MB-231 xenografts without gross cumulative toxicities when administered 5 times a week. The in vivo efficacy of CH-2-77 (20 mg/kg) is comparable with that of CA4P (28 mg/kg), a CBSI that went through clinical trials. Importantly, CH-2-77 prevents lung metastasis originating from the mammary fat pad in a dose-dependent manner. Our data demonstrate that CH-2-77 is a promising new generation of tubulin inhibitors that inhibit the growth and metastasis of TNBC, and it is worthy of further development as an anticancer agent.


Assuntos
Neoplasias de Mama Triplo Negativas , Apoptose , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Colchicina/farmacologia , Colchicina/uso terapêutico , Humanos , Paclitaxel/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico
4.
J Med Chem ; 64(16): 12049-12074, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34378386

RESUMO

We previously reported a potent tubulin inhibitor CH-2-77. In this study, we optimized the structure of CH-2-77 by blocking metabolically labile sites and synthesized a series of CH-2-77 analogues. Two compounds, 40a and 60c, preserved the potency while improving the metabolic stability over CH-2-77 by 3- to 4-fold (46.8 and 29.4 vs 10.8 min in human microsomes). We determined the high-resolution X-ray crystal structures of 40a (resolution 2.3 Å) and 60c (resolution 2.6 Å) in complex with tubulin and confirmed their direct binding at the colchicine-binding site. In vitro, 60c maintained its mode of action by inhibiting tubulin polymerization and was effective against P-glycoprotein-mediated multiple drug resistance and taxol resistance. In vivo, 60c exhibited a strong inhibitory effect on tumor growth and metastasis in a taxol-resistant A375/TxR xenograft model without obvious toxicity. Collectively, this work showed that 60c is a promising lead compound for further development as a potential anticancer agent.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Piridinas/uso terapêutico , Moduladores de Tubulina/uso terapêutico , Tubulina (Proteína)/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Metástase Neoplásica/prevenção & controle , Piridinas/síntese química , Piridinas/metabolismo , Piridinas/farmacocinética , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Breast Cancer Res Treat ; 189(1): 63-80, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34216317

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are recruited to the tumor microenvironment (TME) and are critical drivers of breast cancer (BC) malignancy. Circulating tumor cells (CTCs) travel through hematogenous routes to establish metastases. CTCs circulate both individually and, more rarely, in clusters with other cell types. Clusters of CTCs have higher metastatic potential than single CTCs. Previously, we identified circulating CAFs (cCAFs) in patients with BC and found that while healthy donors had no CTCs or cCAFs, both were present in most Stage IV patients. cCAFs circulate individually, as cCAF-cCAF homotypic clusters, and in heterotypic clusters with CTCs. METHODS: In this study, we evaluate CTCs, cCAFs, and heterotypic cCAF-CTC clusters in patients with stage I-IV BC. We evaluate the association of heterotypic clusters with BC disease progression and metastasis in a spontaneous mouse model. Using previously established primary BC and CAF cell lines, we examine the metastatic propensity of heterotypic cCAF-CTC clusters in orthotopic and tail vein xenograft mouse models of BC. Using an in vitro clustering assay, we determine factors that may be involved in clustering between CAF and BC cells. RESULTS: We report that the dissemination of CTCs, cCAFs, and clusters is an early event in BC progression, and we find these clusters in all clinical stages of BC. Furthermore, cCAFs-CTC heterotypic clusters have a higher metastatic potential than homotypic CTC clusters in vivo. We also demonstrate that the adhesion and stemness marker CD44, found on a subset of CTCs and CAF cells, is  involved in heterotypic clustering of these cells. CONCLUSION: We identify a novel subset of circulating tumor cell clusters that are enriched with stromal CAF cells in BC patient blood and preclinical mouse models of BC metastasis. Our data suggest that clustering of CTCs with cCAFs augments their metastatic potential and that CD44 might be an important mediator of heterotypic clustering of cCAFs and BC cells.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Células Neoplásicas Circulantes , Animais , Biomarcadores Tumorais , Fibroblastos Associados a Câncer/patologia , Contagem de Células , Análise por Conglomerados , Feminino , Humanos , Camundongos , Metástase Neoplásica , Células Neoplásicas Circulantes/patologia , Microambiente Tumoral
6.
Cancers (Basel) ; 14(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008190

RESUMO

The oxygen-responsive hypoxia inducible factor (HIF)-1 promotes several steps of the metastatic cascade. A hypoxic gene signature is enriched in triple-negative breast cancers (TNBCs) and is correlated with poor patient survival. Inhibiting the HIF transcription factors with small molecules is challenging; therefore, we sought to identify genes downstream of HIF-1 that could be targeted to block invasion and metastasis. Creatine kinase brain isoform (CKB) was identified as a highly differentially expressed gene in a screen of HIF-1 wild type and knockout mammary tumor cells derived from a transgenic model of metastatic breast cancer. CKB is a cytosolic enzyme that reversibly catalyzes the phosphorylation of creatine, generating phosphocreatine (PCr) in the forward reaction, and regenerating ATP in the reverse reaction. Creatine kinase activity is inhibited by the creatine analog cyclocreatine (cCr). Loss- and gain-of-function genetic approaches were used in combination with cCr therapy to define the contribution of CKB expression or creatine kinase activity to cell proliferation, migration, invasion, and metastasis in ER-negative breast cancers. CKB was necessary for cell invasion in vitro and strongly promoted tumor growth and lung metastasis in vivo. Similarly, cyclocreatine therapy repressed cell migration, cell invasion, the formation of invadopodia and lung metastasis. Moreover, in common TNBC cell line models, the addition of cCr to conventional cytotoxic chemotherapy agents was either additive or synergistic to repress tumor cell growth.

7.
Mol Cancer Res ; 19(2): 329-345, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33172975

RESUMO

Protein tyrosine kinase 6 (PTK6; also called Brk) is overexpressed in 86% of patients with breast cancer; high PTK6 expression predicts poor outcome. We reported PTK6 induction by HIF/GR complexes in response to either cellular or host stress. However, PTK6-driven signaling events in the context of triple-negative breast cancer (TNBC) remain undefined. In a mouse model of TNBC, manipulation of PTK6 levels (i.e., via knock-out or add-back) had little effect on primary tumor volume, but altered lung metastasis. To delineate the mechanisms of PTK6 downstream signaling, we created kinase-dead (KM) and kinase-intact domain structure mutants of PTK6 via in-frame deletions of the N-terminal SH3 or SH2 domains. While the PTK6 kinase domain contributed to soft-agar colony formation, PTK6 kinase activity was entirely dispensable for cell migration. Specifically, TNBC models expressing a PTK6 variant lacking the SH2 domain (SH2-del PTK6) were unresponsive to growth factor-stimulated cell motility relative to SH3-del, KM, or wild-type PTK6 controls. Reverse-phase protein array revealed that while intact PTK6 mediates spheroid formation via p38 MAPK signaling, the SH2 domain of PTK6 limits this biology, and instead mediates TNBC cell motility via activation of the RhoA and/or AhR signaling pathways. Inhibition of RhoA and/or AhR blocked TNBC cell migration as well as the branching/invasive morphology of PTK6+/AhR+ primary breast tumor tissue organoids. Inhibition of RhoA also enhanced paclitaxel cytotoxicity in TNBC cells, including in a taxane-refractory TNBC model. IMPLICATIONS: The SH2-domain of PTK6 is a potent effector of advanced cancer phenotypes in TNBC via RhoA and AhR, identified herein as novel therapeutic targets in PTK6+ breast tumors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Camundongos , Fenótipo , Ratos , Transdução de Sinais
8.
Oncol Res ; 28(5): 451-465, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32430093

RESUMO

Triple-negative breast cancer (TNBC) is unresponsive to antiestrogen and anti-HER2 therapies, requiring the use of cytotoxic drug combinations of anthracyclines, taxanes, cyclophosphamide, and platinum compounds. Multidrug therapies achieve pathological cure rates of only 2040%, a consequence of drug resistance and cumulative dose limitations necessitated by the reversible cardiotoxic effects of drug therapy. Safer and more effective treatments for TNBC are required to achieve durable therapeutic responses. This study describes the mechanistic analyses of the novel anthracycline, pivarubicin, and its in vivo efficacy against human primary TNBC. Pivarubicin directly activates PKCd, triggers rapid mitochondrial-dependent apoptosis, and circumvents resistance conferred by overexpression of P-glycoprotein, Bcl-2, Bcl-XL, and Bcr-Abl. As a consequence, pivarubicin is more cytotoxic than doxorubicin against MDA-MB-231, and SUM159 TNBC cell lines grown in both monolayer culture and tumorspheres. Comparative in vivo efficacy of pivarubicin and doxorubicin was performed in an orthotopic NSG mouse model implanted with MDA-MB-231 human TNBC cells and treated with the maximum tolerated doses (MTDs) of pivarubicin and doxorubicin. Tumor growth was monitored by digital caliper measurements and determination of endpoint tumor weight and volume. Endpoint cardiotoxicity was assessed histologically by identifying microvacuolization in ventricular cardiomyocytes. Primary tumors treated with multiple rounds of doxorubicin at MTD failed to inhibit tumor growth compared with vehicle-treated tumors. However, administration of a single MTD of pivarubicin produced significant inhibition of tumor growth and tumor regression relative to tumor volume prior to initiation of treatment. Histological analysis of hearts excised from drug- and vehicle-treated mice revealed that pivarubicin produced no evidence of myocardial damage at a therapeutic dose. These results support the development of pivarubicin as a safer and more effective replacement for doxorubicin against TNBC as well as other malignancies for which doxorubicin therapy is indicated.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antraciclinas/farmacologia , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Cardiotoxicidade/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Feminino , Humanos , Dose Máxima Tolerável , Camundongos , Camundongos SCID , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Cancer Ther ; 19(2): 348-363, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31645441

RESUMO

Triple-negative breast cancer (TNBC) accounts for approximately 15% of breast cancer cases in the United States. TNBC has poorer overall prognosis relative to other molecular subtypes due to rapid onset of drug resistance to conventional chemotherapies and increased risk of visceral metastases. Taxanes like paclitaxel are standard chemotherapies that stabilize microtubules, but their clinical efficacy is often limited by drug resistance and neurotoxicities. We evaluated the preclinical efficacy of a novel, potent, and orally bioavailable tubulin inhibitor, VERU-111, in TNBC models. VERU-111 showed potent cytotoxicity against TNBC cell lines, inducing apoptosis and cell-cycle arrest in a concentration-dependent manner. VERU-111 also efficiently inhibited colony formation, cell migration, and invasion. Orally administered VERU-111 inhibited MDA-MB-231 xenograft growth in a dose-dependent manner, with similar efficacies to paclitaxel, but without acute toxicity. VERU-111 significantly reduced metastases originating from the mammary fat pad into lung, liver, and kidney metastasis in an experimental metastasis model. Moreover, VERU-111, but not paclitaxel, suppressed growth of luciferase-labeled, taxane-resistant, patient-derived metastatic TNBC tumors. In this model, VERU-111 repressed growth of preestablished axillary lymph node metastases and lung, bone, and liver metastases at study endpoint, whereas paclitaxel enhanced liver metastases relative to vehicle controls. Collectively, these studies strongly suggest that VERU-111 is not only a potent inhibitor of aggressive TNBC phenotypes, but it is also efficacious in a taxane-resistant model of metastatic TNBC. Thus, VERU-111 is a promising new generation of tubulin inhibitor for the treatment of TNBC and may be effective in patients who progress on taxanes.Results presented in this study demonstrate the efficacy of VERU-111 in vivo and provide strong rationale for future development of VERU-111 as an effective treatment for metastatic breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Moduladores de Tubulina/uso terapêutico , Administração Oral , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Metástase Neoplásica
10.
Mol Pharmacol ; 96(1): 73-89, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31043459

RESUMO

Interfering with microtubule dynamics is a well-established strategy in cancer treatment; however, many microtubule-targeting agents are associated with drug resistance and adverse effects. Substantial evidence points to ATP-binding cassette (ABC) transporters as critical players in the development of resistance. Herein, we demonstrate the efficacy of DJ95 (2-(1H-indol-6-yl)-4-(3,4,5-trimethoxyphenyl)-1H-imidazo[4,5-c]pyridine), a novel tubulin inhibitor, in a variety of cancer cell lines, including malignant melanomas, drug-selected resistant cell lines, specific ABC transporter-overexpressing cell lines, and the National Cancer Institute 60 cell line panel. DJ95 treatment inhibited cancer cell migration, caused morphologic changes to the microtubule network foundation, and severely disrupted mitotic spindle formation of mitotic cells. The high-resolution crystal structure of DJ95 in complex with tubulin protein and the detailed molecular interactions confirmed its direct binding to the colchicine site. In vitro pharmacological screening of DJ95 using SafetyScreen44 (Eurofins Cerep-Panlabs) revealed no significant off-target interactions, and pharmacokinetic analysis showed that DJ95 was maintained at therapeutically relevant plasma concentrations for up to 24 hours in mice. In an A375 xenograft model in nude mice, DJ95 inhibited tumor growth and disrupted tumor vasculature in xenograft tumors. These results demonstrate that DJ95 is potent against a variety of cell lines, demonstrated greater potency to ABC transporter-overexpressing cell lines than existing tubulin inhibitors, directly targets the colchicine binding domain, exhibits significant antitumor efficacy, and demonstrates vascular-disrupting properties. Collectively, these data suggest that DJ95 has great potential as a cancer therapeutic, particularly for multidrug resistance phenotypes, and warrants further development. SIGNIFICANCE STATEMENT: Paclitaxel is a widely used tubulin inhibitor for cancer therapy, but its clinical efficacy is often limited by the development of multidrug resistance. In this study, we reported the preclinical characterization of a new tubulin inhibitor DJ95, and demonstrated its abilities to overcome paclitaxel resistance, disrupt tumor vasculature, and exhibit significant antitumor efficacy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/administração & dosagem , Moduladores de Tubulina/administração & dosagem , Tubulina (Proteína)/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colchicina/metabolismo , Cristalografia por Raios X , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Imidazóis/administração & dosagem , Imidazóis/química , Imidazóis/farmacologia , Masculino , Melanoma/metabolismo , Camundongos , Camundongos Nus , Piridinas/administração & dosagem , Piridinas/química , Piridinas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Cancer ; 15: 26, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27001172

RESUMO

BACKGROUND: Hypoxia-inducible factors (HIFs) are well-established mediators of tumor growth, the epithelial to mesenchymal transition (EMT) and metastasis. In several types of solid tumors, including breast cancers, the HIFs play a critical role in maintaining cancer stem cell (CSC) activity. Thus, we hypothesized that HIFs may also regulate transcription of markers of breast CSC activity. One approach to enrich for breast cells with stem-like phenotypes is FACS sorting, in which sub-populations of live cells are gated based on the expression of cell surface antigens, including various integrin subunits. Integrin alpha 6 (ITGA6; CD49f) is routinely used in combination with other integrin subunits to enrich for breast stem cells by FACS. Integrins not only mediate interactions with the extracellular matrix (ECM), but also drive intracellular signaling events that communicate from the tumor microenvironment to inside of the tumor cell to alter phenotypes including migration and invasion. METHODS: We used two models of metastatic breast cancer (MBC), polyoma middle T (MMTV-PyMT) and MDA-MB-231 cells, to compare the expression of ITGA6 in wild type and knockout (KO) or knockdown cells. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays verified that ITGA6 is a direct HIF transcriptional target. We also used FACS sorting to enrich for CD49f (+) cells to compare tumorsphere formation, tumor initiating cell activity, invasion and HIF activity relative to CD49f(neg or low) cells. Knockdown of ITGA6 significantly reduced invasion, whereas re-expression of ITGA6 in the context of HIF knockdown partially rescued invasion. A search of public databases also revealed that ITGA6 expression is an independent prognostic factor of survival in breast cancer patients. RESULTS: We report that ITGA6 is a HIF-dependent target gene and that high ITGA6 expression enhances invasion and tumor-initiating cell activities in models of MBC. Moreover, cells that express high levels of ITGA6 are enriched for HIF-1α expression and the expression of HIF-dependent target genes. CONCLUSIONS: Our data suggest that HIF-dependent regulation of ITGA6 is one mechanism by which sorting for CD49f (+) cells enhances CSC and metastatic phenotypes in breast cancers. Our results are particularly relevant to basal-like breast cancers which express higher levels of the HIFα subunits, core HIF-dependent target genes and ITGA6 relative to other molecular subtypes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Integrina alfa6/genética , Modelos Biológicos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral , Intervalo Livre de Doença , Regulação para Baixo/genética , Feminino , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Integrina alfa6/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Transcrição Gênica
12.
Endocrinology ; 153(3): 1070-81, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22294742

RESUMO

Androgen deprivation therapy (ADT) is the mainstay of treatment for advanced prostate cancer. ADT improves overall and disease-free survival rates, but long-term therapy is associated with severe side effects of androgen and estrogen depletion including hot flashes, weight gain, depression, and osteoporosis. Effective hormone reduction can be achieved without estrogen deficiency-related side effects by using therapy with estrogenic compounds. However, cardiovascular complications induced by estrogens coupled with the availability of LHRH agonists led to discontinuation of estrogen use for primary androgen deprivation therapy in the 1980s. New treatments for prostate cancer that improve patient outcomes without the serious estrogen deficiency-related toxicities associated with ADT using LHRH analogs are needed. Herein we describe a novel nonsteroidal selective estrogen receptor-α agonist designed for first-line therapy of advanced prostate cancer that in animal models induces medical castration and minimizes many of the estrogen deficiency-related side effects of ADT. The present studies show that orally administered GTx-758 reversibly suppressed testosterone to castrate levels and subsequently reduced prostate volume and circulating prostate-specific antigen in relevant preclinical models without inducing hot flashes, bone loss, thrombophilia, hypercoagulation, or increasing fat mass.


Assuntos
Benzamidas/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/metabolismo , Neoplasias da Próstata/metabolismo , Antagonistas de Androgênios/farmacologia , Animais , Antineoplásicos Hormonais/metabolismo , Composição Corporal , Proliferação de Células , Intervalo Livre de Doença , Receptor beta de Estrogênio/metabolismo , Estrogênios/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Humanos , Hormônio Luteinizante/metabolismo , Macaca fascicularis , Masculino , Ratos , Testosterona/metabolismo , Ativação Transcricional
13.
Drug Metab Dispos ; 39(10): 1833-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21742898

RESUMO

Microtubules are critical components of the cytoskeleton. Perturbing their function arrests the growth of a broad spectrum of cancer cell lines, making microtubules an excellent and established target for chemotherapy. All of the U.S. Food and Drug Administration-approved antitubulin agents bind to paclitaxel or vinblastine binding sites in tubulin. Because of the complexity of their structures, it is difficult to structurally modify the vinca alkaloids and taxanes and develop orally bioavailable agents. Antitubulin agents that target the colchicine-binding site in tubulin may provide a better opportunity to be developed for oral use because of their relatively simple structures and physicochemical properties. A potent antitubulin agent, 4-(3,4,5-trimethoxybenzoyl)-2-phenyl-thiazole (SMART-H), binding to the colchicine-binding site, was discovered in our laboratory. However, the bioavailability of SMART-H was low because of its poor solubility. Structural modification of SMART-H led to the development of 2-aryl-4-benzoyl-imidazole analog (ABI-274), with improved bioavailability and potency but still considerable first-pass metabolism. A chlorine derivative (ABI-286), replacing the methyl site of ABI-274, resulted in 1.5-fold higher metabolic stability in vitro and 1.8-fold lower clearance in rats in vivo, indicating that metabolic stability of ABI-274 can be extended by blocking benzylic hydroxylation. Overall, ABI-274 and ABI-286 provided 2.4- and 5.5-fold increases in exposure (area under the curve) after oral dosing in rats compared with SMART-H. Most importantly, the structural modifications did not compromise potency. ABI-286 exhibited moderate clearance, moderate volume of distribution, and acceptable oral bioavailability. This study provided the first evidence that ABI-286 may be the first member of a new class of orally bioavailable antitubulin agents.


Assuntos
Colchicina/análogos & derivados , Colchicina/metabolismo , Imidazóis/farmacocinética , Tiazóis/farmacocinética , Administração Oral , Animais , Sítios de Ligação , Disponibilidade Biológica , Linhagem Celular Tumoral , Colchicina/química , Cães , Feminino , Humanos , Imidazóis/química , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacocinética , Ratos , Solubilidade , Relação Estrutura-Atividade , Tiazóis/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacocinética , Vimblastina/farmacocinética
14.
Cancer Res ; 71(1): 216-24, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21084278

RESUMO

Formation of microtubules is a dynamic process that involves polymerization and depolymerization of αß-tubulin heterodimers. Drugs that enhance or inhibit tubulin polymerization can destroy this dynamic process, arresting cells in the G(2)/M phase of the cell cycle. Although drugs that target tubulin generally demonstrate cytotoxic potency in the subnanomolar range, resistance due to drug efflux is a common phenomenon among the antitubulin agents. We recently reported a class of 4-substituted methoxybenzoyl-aryl-thiazoles (SMART) that exhibited great in vitro potency and broad spectrum cellular cytotoxicity. Evaluation of the in vitro and in vivo anticancer activities of 3 SMART compounds, SMART-H (H), SMART-F (F), and SMART-OH (OH), with varying substituents at the 4-position of aryl ring, demonstrated that they bind potently to the colchicine-binding site in tubulin, inhibit tubulin polymerization, arrest cancer cells in G(2)/M phase of the cell cycle, and induce their apoptosis. The SMART compounds also equipotently inhibit the growth of parental and MDR-overexpressing cells in vitro, indicating that they can overcome multidrug resistance. In vivo antitumor efficacy studies in human prostate (PC-3) and melanoma (A375) cancer xenograft models demonstrated that SMART-H and SMART-F treatments resulted in %T/C values ranging from 4% to 30%. In addition, in vivo SMART-H treatment for 21 days at the higher dose (15 mg/kg) failed to produce any apparent neurotoxicity. These studies provide the first in vivo evidence and proof-of-concept that SMART compounds are similarly efficacious to currently FDA approved antitubulin drugs for cancer treatment, but they can circumvent P-glycoprotein-mediated drug resistance.


Assuntos
Microtúbulos/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Melanoma/patologia , Camundongos , Camundongos Endogâmicos ICR , Neoplasias da Próstata/patologia , Ratos , Ratos Sprague-Dawley , Tiazóis/farmacocinética , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...